Sample document

Patrick Massot

May 2, 2021

Introduction

This is a sample LATEX document intended to show what plasTEX can do. It is made of random excerpts of mathematical texts.

1 Basic typesetting

Of course you can type paragraphs containing some mathematics, such as the following one.

If $G = \operatorname{GL}_2$ then $G_{\operatorname{ad}} = \operatorname{PGL}_2$ and so, as above, $G_1 = \operatorname{SL}_2$. Now G_2 is the set of $(g,h) \in \operatorname{SL}_2 \times \operatorname{GL}_2$ with g = h in PGL_2 , so $h = \lambda g$ for some unique $\lambda \in \mathbf{G}_m$ and $G_2 = \operatorname{SL}_2 \times \mathbf{G}_m$, with the obvious map to GL_2 sending \mathbf{G}_m into the centre (or perhaps its inverse depending on how one is thinking about things, but this doesn't matter). The subgroup μ_2 is embedded diagonally of course, because it's the kernel of the map $G_2 \to G$. Finally we push out via $\mu_2 \to \mathbf{G}_m$ and this gives us $\operatorname{SL}_2 \times \mathbf{G}_m \times \mathbf{G}_m$ modulo the subgroup of order 2 with nontrivial element (-1, -1, -1). But there's an automorphism of $\mathbf{G}_m \times \mathbf{G}_m$ sending (-1, -1) to (-1, 1) (namely, send (x, y) to (x, xy)) so again \tilde{G} is just $G \times \mathbf{G}_m$.

You can also use displayed formulas such as:

$$\int_{I \times \Sigma} \Phi^* \omega = \int_I \left(\int_{\Phi_t(\Sigma)} \iota_X \omega \right) dt.$$

and refer to displayed formulas such as Equation 1 below.

$$\int_{M} d\omega = \int_{\partial M} \omega \tag{1}$$

Commutative diagrams using tikz-cd are supported as well.

2 Theorems and proofs

You can state and prove results, and refer to them, for instance Lemma 1 below.

Lemma 1. Splittings of $0 \to \mathbf{G}_m \to \tilde{G} \to G \to 0$ canonically biject with twisting elements for G.

Proof. To give a splitting is to give a map $\tilde{G} \to \mathbf{G}_m$ such that the composite $\mathbf{G}_m \to \tilde{G} \to \mathbf{G}_m$ is the identity; then the induced map $\tilde{G} \to G \times \mathbf{G}_m$ is an injection with trivial kernel so is an isomorphism for dimension reasons. If $\chi: \tilde{G} \to \mathbf{G}_m$ is such a character then χ gives rise to an element of $X^*(\tilde{T})$ which is Galois-stable, whose image in \mathbf{Z} is 1, and which pairs to zero with each coroot (because χ factors through the maximal torus quotient of \tilde{G}). Conversely to give such a character is to give a splitting. Now one checks that $\theta - \chi$ has image in \mathbf{Z} equal to zero so gives rise to an element of $X^*(T)$ which is Galois-stable, and pairs with each simple coroot to 1—but this is precisely a twisting element for G. Conversely if t is a twisting element for G then $\theta - t$ gives a splitting of the exact sequence.

3 Enumerations and tables

You can use lists such as:

- $(\Phi \circ \Psi)_* X = \Phi_* \Psi_* X$
- $(\varphi \circ \psi)^* \alpha = \psi^* \varphi^* \alpha$
- $\varphi^* d\alpha = d\varphi^* \alpha$
- $\Phi^*(\mathcal{L}_X\alpha) = \mathcal{L}_{\Phi^{-1}_X}\Phi^*\alpha$
- $\Phi^*(i_X\alpha) = i_{\Phi^{-1}_*X}\Phi^*\alpha$

and tables, possibly inside a figure environment such as Figure 1.

	(1)	(12)	(123)
$\chi_{ m triv}$	1	1	1
$\chi_{ m sgn}$	1	-1	1
$\chi_{ m std}$	2	0	-1

Figure 1: Character table for S_3